IIIII

(3 Droof

= Bring trust into your projects

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

Pinksale

Audit

Security Assessment
02. June, 2022

For

Yy SolidProof io A @solidproof io

https://t.me/solidproof_io
https://twitter.com/SolidProof_io

Disclaimer
Description

Project Engagement
Logo

Contract Link
Methodology

Used Code from other Frameworks/Smart Contracts (direct imports)

Tested Contract Files
Source Lines

Risk Level

Capabilities

Inheritance Graph

CallGraph

Scope of Work/Verify Claims
Modifiers and public functions
Source Units in Scope
Critical issues

High issues

Medium issues

Low issues

Informational issues

Audit Comments

SWC Attacks

oo N o o o O W

10
11
12
13
14
17
18
19
19
19
19
19
22
23

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc'..)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Version Date Description

1.0 02. May 2022 - Layout project
- Automated- /Manual-Security Testing
- Summary

http://SolidProof.io

Network
Binance Smart Chain (BEP20)

Website

https:/www.pinkmoon.finance/#/

Telegram
https:/t.me/pinkmoonfinance

Twitter
https://twitter.com/pinkmoonfinance

Github

https://aithub.com/pinkmoonfinance

Medium
https:/medium.com/@pinkmoonfinance

https://www.pinkmoon.finance/#/
https://t.me/pinkmoonfinance
https://twitter.com/pinkmoonfinance
https://github.com/pinkmoonfinance
https://medium.com/@pinkmoonfinance

Description

PinkSale is a decentralized launchpad that allows users to launch their
own token and create their own initial token sale. No coding knowledge is
required, just simply navigate through to our terminal and design your
own token in just a few clicks. PinkSale offers multiple other features to
help you with the overall token launch, such as: Automatic listing of your
token on PancakeSwap, UniSwap, ShibaSwap, SushiSwap, KuSwap,
QuickSwap and MM Finance, all whilst giving you the ability to lock your
LP and and adding an optional vesting period for your tokens.

Project Engagement

During the 1st of June 2022, PinkMoon Finance Team engaged
Solidproof.io to audit smart contracts that they created. The engagement
was technical in nature and focused on identifying security flaws in the
design and implementation of the contracts. They provided Solidproof.io
with access to their code repository and whitepaper.

Logo
—-—
ol |

Contract Link

v1.0

Github
https://github.com/pinkmoonfinance/pink-lock-contracts-v3
Commit: 41c23000144f19d6f21f54274acb48735dccOfef

https://github.com/pinkmoonfinance/pink-lock-contracts-v3

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Medium

4-69

A vulnerability that
can disrupt the
contract functioning
in @ number of
scenarios, or creates a
risk that the contract
may be broken.

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

A vulnerability that
have informational
character but is not
effecting any of the
code.

Immediate action to
reduce risk level.

Implementation of
corrective actions as
soon aspossible.

Implementation of
corrective actionsin a
certain period.

Implementation of
certain corrective
actions or accepting
the risk.

An observation that
does not determine a
level of risk

Auditing Strategy and Techniques
Applied

Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:
1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test
cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

Dependency / Import Path Count
@openzeppelin/contracts/token/ERC20/IERC20.sol 1
@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol 1
@openzeppelin/contracts/utils/Address.sol 1

@openzeppelin/contracts/utils/structs/EnumerableSet.sol 1

[./IPinkLock.sol
[./IUniswapV2Router02.sol
[./IlUniswapV2Pair.sol

[3 ./lUniswapV2Factory.sol
[./FullMath.sol

Tested Contract Files
This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

V1.0
File Name SHA-1 Hash
contracts/IlUniswapV2Pair.sol d01c1a641b0eefea16170c00919892e194eb0253
contracts/FullMath.sol 352f6d24430fe319329e9ecf66a1628597d4{8¢
contracts/IUniswapV2Factory.sol f6f535836b25cacb92c0c63a9c06ec933800d5d9
contracts/PinkLock02.sol a7dda37ab57d7c3d12abe84e3a5f791bda87283

contracts/IUniswapV2Router02.sol 02ae557581982c9f100a13e0ef50b83e790daaa5
contracts/IPinkLock.sol 9fc63e63f74830ab3c4a976ce29779a50c88a50e

Metrics

Source Lines
v1.0

I source comment [l single block M mixed
I empty [todo blockEmpty

<K

Risk Level
v1.0

1 overall average

perceivedComplexity
7
compilerVersion size
compilerFeatures numLogicContracts
inlineDocumentation numFiles
interfaceRisk

10

Capabilities

Components

Version

1.0

Exposed Functions

Contracts

Libraries

Interfaces

Abstract

This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

Version

1.0

Version

1.0

Public

92

External

85

State Variables

Version

1.0

Total

Capabilities

Version

1.0

Solidity
Versions
observed

=0.8.4
>=0.4.

Payable

4

Internal

57

Public

Experim
ental
Features

Private

Can
Receive
Funds

yes

Pure

12

Uses
Assembl

y

yes
(7 asm
blocks)

View

43

Has
Destroya
ble
Contract
s

11

Inheritance Graph
v1.0

IUniswapV2Pair IUniswapV2Factory PinkLock02 IUniswapV2Router02

4

4
IUniswapV2Router01

12

CallGraph
v1.0

13

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:
1. Overall checkup (Smart Contract Security)

14

Write functions of contract
v1.0

lock

vestinglLock
multipleVestingLock
unlock

editLock

editLockDescription

transferLockOwnership

renounceLockOwnership

15

Overall checkup (Smart Contract Security)

Tested Verified

Legend

Attribute Symbol

Verfified / Checked

Partly Verified

Unverified / Not checked

Not available

16

Modifiers and public functions
v1.0
lock

vestingLock

multipleVestingLock

unlock
® validLock
editLock
® validLock
editLockDescription
® validLock
transferLockOwnership
® validLock

renounceLockOwnership

Note: Not listed functions are implemented from libraries

Comments
Existing Modifiers
validLock

Please check if an OnlyOwner or similar restrictive modifier has been
forgotten.

17

Source Units in Scope

v1.0
. Logic . . Comment Complex. .
Type File Contracts Interfaces Lines nLines nSLOC Lines Score Capabilities
Q contracts/IlUniswapV2Pair.sol 1 105 8 5 1 55
& contracts/FullMath.sol 1 109 105 50 54 99 -z
Q contracts/IUniswapV2Factory.sol 1 32 12 9 1 17
4 contracts/PinkLock02.sol 1 878 723 636 15 362 DY)
SN contracts/IlUniswapV2Router02.sol 2 208 6 4 1 64 &
Q contracts/IPinkLock.sol 1 45 5 3 1 1
7€ -
a Totals 2 5 1377 859 707 73 608 oS
Legend
Attribute Description
Lines total lines of the source unit
nLines normalized lines of the source unit (e.g. normalizes functions
spanning multiple lines)
normalized source lines of code (only source-code lines; no
NSLOC :
comments, no blank lines)
Comment Lines lines containing single or block comments

a custom complexity score derived from code statements that
Complexity Score are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

18

Audit Results

Critical issues

High issues

Medium issues

Low issues

Informational issues

Issue File Type Line Description
#1 Main Misspelling See Change following words:
description
- bips L28, L30

- lastest L42, L141, L142, L183
- transfered L664

Make sure to change it
everywhere else as well.

#2 Main Initialized variable L852 If you have started to
initialize local variables,
initialize the others also.

Compared to L537, L544

19

#3 Main Unnecessary modifier 389, 557, We recommend you to use
in L86 608, 621 “_getActuallndex” function

instead of the modifier

because of duplication.

The modifier “validLock” is
calling the “_getActuallndex”
function which reverts the
function or returns the
actuallndex.

And after the modifier has
been executed you are
calling again the
“_getActuallndex” function to
get the Index in every
function where the modifier
is used.

The “_getActuallndex” is
reverting already if the
passed lockld is smaller than
ID_PADDING and
“actuallndex” is higher than
“_locks” length

#4 Main Duplicates Look atthe There are many situations
source code where the code is repeating.
You can put some logic into
functions to get rid of
repetitions

20

Contract testing results
PinkLock02
v’ can lock normal token (427ms)
v can lock Lp token (394ms)
v can edit lock (463ms)
v cant edit lock with lower amount (391ms)
v cant edit lock with lower unlock time (388ms)
v only owner can edit their lock (376ms)
v cant edit unlocked lock (411ms)
v can unlock lock (409ms)
v cumulative info updated (459ms)
v Update total lock count for token (417ms)
v’ Can get locks for token (454ms)
v Returns lock count for user (438ms)
v Returns lock for user at index (482ms)
v Can edit add new amount (385ms)
v Not allow using tax token (536ms)
v Can do vesting lock (374ms)
v Can unlock vesting lock (466ms)
v Can unlock vesting lock in one tx (397ms)
v Revert when supplying invalid lock id (560ms)
v/ Cannot do vesting lock given invalid params (421ms)
v Cant unlock lock if is not the owner (367ms)
v Cant unlock normal lock if unlock time haven't been passed (363ms)
v Cant unlock normal lock if already unlocked (390ms)
v Properly update cumulative amount when unlocked (478ms)
v Returns correct total lock count (405ms)
v Returns correct total lock count (428ms)
v Returns correct lock at specific index (393ms)
v Returns Ip and normal token lock info (830ms)
v Returns correct all tokens lock count (810ms)
v Revert if supplying an invalid LP token (527ms)
v Can renounce lock ownership (392ms)
v/ Can do multiple vesting (369ms)

21

Audit Comments

We recommend you to use the special form of comments (NatSpec
Format, Follow link for more information https://docs.soliditylang.org/en/
v0.5.10/natspec-format.html) for your contracts to provide rich
documentation for functions, return variables and more. This helps
investors to make clear what that variables, functions etc. do.

02. June 2022:

Read whole report and modifiers section for more information

22

https://docs.soliditylang.org/en/v0.5.10/natspec-format.html
https://docs.soliditylang.org/en/v0.5.10/natspec-format.html

SWC Attacks

ID

0
=

3

B &

‘m
=

I

‘m
=

s

n
=

O

HRE K]

‘m
=

6L

n
=

3

BRE R

Title

Unencrypted
Private Data
On-Chain

Code With No
Effects

Message call
with
hardcoded
gas amount

Hash
Collisions With
Multiple
Variable
Length
Arguments

Unexpected
Ether balance

Presence of
unused
variables

Right-To-Left-
Override
control
character
(U+202E)

Typographical
Error

DoS With
Block Gas
Limit

Relationships

CWE-767: Access to Critical
Private Variable via Public
Method

CWE-1164: Irrelevant Code

CWE-655: Improper
Initialization

CWE-294: Authentication
Bypass by Capture-replay

CWE-667: Improper Locking

CWE-1164: Irrelevant Code

CWE-451: User Interface (Ul)
Misrepresentation of Critical

Information

CWE-480: Use of Incorrect
Operator

CWE-400: Uncontrolled
Resource Consumption

Status

23

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

‘m
=

N

=

s

‘m
=

R [2

0
=

O

RRE R

‘m
=

STe

‘m
=

oL

0 |ooQ‘m m‘(p‘m
‘E ‘:5 LS

N ‘(‘)
1

Arbitrary
Jump with
Function Type
Variable

Incorrect
Inheritance
Order

Write to
Arbitrary
Storage
Location

Requirement
Violation

Lack of Proper
Signature
Verification

Missing
Protection
against
Signature
Replay Attacks

Weak Sources
of
Randomness
from Chain
Attributes

Shadowing
State Variables

Incorrect
Constructor
Name

Signature
Malleability

CWE-695: Use of Low-Level
Functionality

CWE-696: Incorrect Behavior
Order

CWE-123: Write-what-where
Condition

CWE-573: Improper Following
of Specification by Caller

CWE-345: Insufficient
Verification of Data
Authenticity

CWE-347: Improper
Verification of Cryptographic

Signature

CWE-330: Use of Insufficiently
Random Values

CWE-710: Improper Adherence

to Coding Standards

CWE-665: Improper
Initialization

CWE-347: Improper
Verification of Cryptographic

Signature

24

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

[¥a] [ON'e) ‘U)
‘5 ‘: s

[€p ‘O
1

‘m
=

IS ‘Q

[¥a] N O ‘U)
‘5 ‘: s

N ‘O
1

=

I—‘O
a
—

wn o 10 |\
2 PLE

8 [2

=

& 2

‘m
=

RE

‘m
=

82

Timestamp
Dependence

Authorization
through
tx.origin

Transaction
Order
Dependence

DoS with
Failed Call

Delegatecall
to Untrusted
Callee

Use of
Deprecated
Solidity
Functions

Assert
Violation

Uninitialized
Storage
Pointer

State Variable
Default
Visibility

Reentrancy

Unprotected
SELFDESTRUC
T Instruction

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race

Condition')

CWE-703: Improper Check or
Handling of Exceptional
Conditions

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-670: Always-Incorrect
Control Flow Implementation

CWE-824: Access of
Uninitialized Pointer

CWE-710: Improper Adherence
to Coding Standards

CWE-841: Improper
Enforcement of Behavioral
Workflow

CWE-284. Improper Access
Control

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

=

3

n
=

O

geE K|

‘m
=

B

=

El

‘m
=

|O |(')
O |4

Unprotected
Ether
Withdrawal

Unchecked
Call Return
Value

Floating
Pragma

Outdated
Compiler
Version

Integer
Overflow and
Underflow

Function
Default
Visibility

CWE-284. Improper Access
Control

CWE-252: Unchecked Return
Value

CWE-664: Improper Control of
a Resource Through its
Lifetime

CWE-937: Using Components
with Known Vulnerabilities

CWE-682: Incorrect
Calculation

CWE-710: Improper Adherence

to Coding Standards

26

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

Yy SolidProof io A @solidproof io

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

https://twitter.com/SolidProof_io
https://t.me/solidproof_io

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Inheritance Graph
	CallGraph
	Scope of Work/Verify Claims
	Modifiers and public functions
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Audit Comments
	SWC Attacks

